If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+5=60
We move all terms to the left:
x^2+5-(60)=0
We add all the numbers together, and all the variables
x^2-55=0
a = 1; b = 0; c = -55;
Δ = b2-4ac
Δ = 02-4·1·(-55)
Δ = 220
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{220}=\sqrt{4*55}=\sqrt{4}*\sqrt{55}=2\sqrt{55}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{55}}{2*1}=\frac{0-2\sqrt{55}}{2} =-\frac{2\sqrt{55}}{2} =-\sqrt{55} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{55}}{2*1}=\frac{0+2\sqrt{55}}{2} =\frac{2\sqrt{55}}{2} =\sqrt{55} $
| 20x-71=x+43 | | 9x2–2x=0 | | −2(3x−8)=−x+17 | | 49x4121x^2=0 | | x+3÷=5 | | −2+x=−4 | | -26=-4n-6n | | 2x+5=1x+8 | | x^2-5x+6.25=5.75 | | 8(3x-10)=2x+8 | | x-7=3x+12 | | x+96=138 | | x+x60=90 | | 3(1+p)=-5 | | 5-2(3-x)=10 | | b/3-5=-11 | | 5x=2x+3(2x+2) | | 10x-10=67 | | x=1+2/5 | | (4x+7)+(6x+3)=90 | | 5x+10=4+2x | | −2(10+x)=−30 | | x/1.5=1091.9 | | 225=3x+20 | | 19b=27 | | 7(6x-12)+42=-294 | | x=6(x-1)=7(3+x) | | 225=3x+1+9+9 | | 2(3x-11)=2x+2 | | 4x+26=-2 | | 3x+5=4(9-0,75) | | 4x2-12x+7=0 |